Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massively parallel LES of azimuthal thermo- acoustic instabilities in annular gas turbines

Most of the energy produced worldwide comes from the combustion of fossil fuels. In the context of global climate changes and dramatically decreasing resources, there is a critical need for optimizing the process of burning, especially in the field of gas turbines. Unfortunately, new designs for efficient combustion are prone to destructive thermo-acoustic instabilities. Large Eddy Simulation (...

متن کامل

Acoustic and Large Eddy Simulation studies of azimuthal modes in annular combustion chambers

The objectives of this paper are the description of azimuthal instability modes found in annular combustion chambers using two numerical tools: (1) Large Eddy Simulation (LES) methods and (2) acoustic solvers. These strong combustion instabilities are difficult to study experimentally and the present study is based on a LES of a full aeronautical combustion chamber. The LES exhibits a self-exci...

متن کامل

Analytical methods for azimuthal thermo-acoustic modes in annular combustion chambers

Large power densities in gas turbines can be accompanied by combustion instabilities (Culick & Kuentzmann 2006; Lieuwen & Yang 2005) due to a coupling between the flames and acoustics, creating high pressure and heat release oscillations in the chamber. Such oscillations may destroy the whole propulsion system and combustion instabilities have been a key issue for aeronautics and propulsion sys...

متن کامل

Large-eddy simulation of kerosene spray combustion in a model scramjet chamber

Large-eddy simulation (LES) of kerosene spray combustion in a model supersonic combustor with cavity flame holder is carried out. Kerosene is injected through the ceiling of the cavity. The subgrid-scale (SGS) turbulence stress tensor is closed via the Smagorinsky’s eddyviscosity model, chemical source terms are modelled by a finite rate chemistry (FRC) model, and a four-step reduced kerosene c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Engineering for Gas Turbines and Power

سال: 2017

ISSN: 0742-4795,1528-8919

DOI: 10.1115/1.4037824